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Abstract—Vessel enhancement is an important pre-processing 

step of applications in vessel image analysis. However, most of the 

current methods are developed merely based on the intensity 

variety inside and outside vessel instead of considering the vessel 

path, which emphasizes the vascular structures via characterizing 

additional connectivity and length information. Aiming at further 

utilizing beneficial length information of vessels, we propose a 

novel method to impose length constraint on Hessian information 

for vessel enhancement. Specifically, Eigen analysis of multiscale 

Hessian matrix has been taken at each pixel for the local vesselness 

response and direction information. Then, vessel path is searched 

along each pixel’s direction, as well as maintains the property of 

curvilinear smoothness. The proposed method is compared with 

three conventional vessel enhancement methods. The experiment 

results show that our proposed approach has the advantages of the 

fine response of low-contrast vessel region and less noise 

background. In addition, the quantity evaluation indicates that a 

state-of-art vessel enhancement performance could be achieved 

compared with other methods. 
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I. INTRODUCTION  

Vessel enhancement plays a crucial role in clinical vessel 
visualization and quantificational analysis. The multiscale 
nature of vessels, image noise and poor visibility of small vessels 
make it a challenging task.  To tackle this problem, a variety of 
algorithms has been proposed. A common approach for vessel 
enhancement is based on the Eigen analysis of Hessian matrix. 
It takes advantage of the fact that the local intensity of the ideal 
bright vessel part has negative peaks on the second derivative 
across it [1]. The most famous method based on this concept was 
proposed by Frangi et al. [2] in 1998. They considered all 
eigenvalues and gave the intuitive geometrical interpretation for 
vessel enhancement.  

Apart from the second order derivatives, the gradient 
information, which has less interruption from the adjacent 
objects, also can be utilized for the vessel enhancement. A 
gradient flux which attains its maximum at the centerline of the 
vessel is the fundamental of the method called OOF (optimally 
oriented flux) proposed by Law et al.  [3] in 2008. Despite the 
success of Hessian and gradient based methods, they only use 
the local information of the image which may bring the problem 
of junction suppression and noisy background.  Merveille O et 
al. [4] proposed the method called RORPO (Ranking the 
Orientation Response of Path Operators) based on non-local 
path opening operation and took intensity difference between 

inside and outside the vessel regions into consideration in 2014. 
This method achieved promising results in solving junction 
suppression by using non-local features of vessel via path 
operator. However, compared with local information based 
method, it may cause inaccurate vessel direction because of 
applying the path operation with pre-fixed rough curvilinear 
orientations. Moreover, it could suffer from the noisy 
interruption and poor robustness via using intensity subtraction 
only for enhancement.  

Coping with the aforementioned challenges, we proposed a 
new novel method to integrate the non-local vessel path 
information to local vessel information. In order to preserve 
more details of vessels and obtain better visualization, the vessel 
path is searched in a way that can well present vessels’ geometric 
shape and curvilinear smoothness. In addition, we further 
developed a transformation of the traditional curvature response. 
Finally, we proposed to use the length-constrained hessian 
information for vessel enhancement. 

The rest of this paper is organized as follow. Section II 
describes the proposed vessel enhancement method. Section III 
presents the experimental results. Finally, section IV concludes 
the paper. 

 

Fig.1. The flowchart of the proposed framework for the vessel enhancement.    
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  (a)                                                                                                   (b)                                                                            (c)            

        Fig.2.  Transformation of the traditional curvature response. (a)  Original value’s distribution of the  𝜆2 ; (b) Transformation of 𝐻𝜆𝑠  with different γ  ; 

 (c) Magnified value’s distribution of  𝜆2 with γ=5; 

 

 

II. PROPOSED METHOD 

The proposed method is illustrated in Fig.1, where 
generating of the vessel path is the key step. In this method, the 
multiscale Hessian matrix information is first obtained. Next, we 
magnify the low curvature response. Meanwhile the vessel path 
is searched and corrected according to the local vessel directions 
and scales. Then the final vessel enhancement results from the 
adjusted curvature response combined with the non-local vessel 
path response. 

A. Hessian information and curvature response 

 In order to detect vessel structure, it is common to take the 
Eigen analysis of the Hessian matrix that captures the second 
order structure of local intensity variations in the proximity of 
each pixel [1]. The Hessian matrix can be calculated through the 
convolution of the image with the second derivative of a 
Gaussian kernel at scale ‘s’. Since the vessel usually has 
different size, it is usual to analyze the eigenvalues of multiscale 
Hessian matrix. Specifically, Hessian matrix measures contrast 
between the region inside and outside the range (-s, s), which 
indicates scale ‘s’ can represent the radius of vessel. The two 
eigenvalues of Hessian matrix of a 2D image are referred as 𝜆1 
and  𝜆2 (|𝜆1|  |𝜆2|) and corresponding eigenvector are 𝜐⃗1 and 
𝜐⃗2  respectively.  𝜆1  represents the variation of the intensity 
along the vessel’s principal orientation (𝜐⃗1) and 𝜆2  represents 
variation of intensity along its perpendicular orientation (𝜐⃗2 . 

In fact, the intensity change along the principal orientation 
of vessel is much smaller than that along its perpendicular 
orientation [5]. Based on this observation, magnitude of 𝜆2 is a 
good measurement of the curvature response as well as the 
likelihood of vessel structures. Namely, pixels with large value 
of 𝜆2 have high probability belonging to the vessel. However, in 
the region of bifurcation and vessel with low contrast, the values 
of 𝜆2 are concentrated in the small numerical value parts (see 
Figure 2(a)) .Therefore, our target changed to enhance the vessel 
pixels with small value of 𝜆2. Here we define the new local 
vessel response by magnifying the small value part of 𝜆2 ,which 
is normalized by its maximum value. Then the new curvature 
response (for dark objects in bright background) is defined as: 

          

  𝐻𝜆𝑠 a  {
0                                   𝑖𝑓  𝜆2  0.  

1   1  𝜆2 
𝛾             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

              (1) 

 

where 𝛾  is manually set constant indicating the degree of 
amplification and ‘a’ is an image point. Transformation made by 
equation (1) with different  𝛾 , can present the region of small 
value of 𝜆2 while not change their own monotonicity (see Figure 
2(b)). Then, we select the largest response among multiple scales 
of Hessian matrix to represent the local vessel measurement. 

B. Vessel path response 

 𝐻𝜆𝑠  can enhance regions of bifurcation and low-contrast 
vessel that have small values of 𝜆2 , as well as the noise 
background (see figure 2 (c)). In order to solve this problem, we 
introduce the non-local vessel path feature to distinguish vessel 
from noise.  

1) Adjacency and paths: Morphological path operator was 

proposed in [6], which is used to filter the curved lines via 

specified orientations. Supposing the discrete image points set 

as E, which can be equipped with a binary adjacency links ‘→’. 

Specifically, ‘𝑎 → 𝑏’ means that there is a path going from 

point ‘a’ to point ‘b’ in E by a specified orientation (see Figure3 

(a)). Using the adjacency relationship we can define the path of 

length L that is constituted of L points successively adjacent of 

E. Practically, the L-tuple 𝑋   𝑎1, 𝑎2, … , 𝑎𝐿  is called a path 

of length L. We denote it by  𝐿 𝑋  .  
 

2) Vessel path searching: Inspired by the morphological 

path operator, we introduce the direction information from 

Hessian matrix to form the vessel path. From the Eigen analysis 

of the Hessian matrix, we can get the eigenvector  𝜐⃗1 and 𝜐⃗2 

indicating the direction along vessel and its radial direction 

respectively [7]. Therefore, we can incorporate points in the 

direction of  𝜐⃗1  and its opposite direction in each point to 

forming the vessel path. The path searches the nearest points  
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             (a)                                                     (b) 

Fig.3. (a) A path going form ‘a’ to ‘b’ by specified orientation ; (b) The 
vessel path along the 𝜐⃗1  direction in red and radial path along the  𝜐⃗2 
direction in purple. 

 

based on the current point’s direction and takes a pointwise step 

(see figure 3 (a)).We denote the path formed by vessel direction 

information with length of L by   𝑣⃗⃗𝐿 : 

 

                         𝛔𝑣⃗⃗𝐿 X   𝑎𝑣⃗⃗1, 𝑎𝑣⃗⃗2, … , 𝑎𝑣⃗⃗𝐿                          (2) 

                                                                                         

where 𝑎𝑣⃗⃗𝑖 → 𝑎𝑣⃗⃗𝑖+1 , 𝑖𝜖 1,2, … , 𝐿  1  and X contains  elements  

of the path. It is vital to make stop criterion for path searching 

when it may go out of the vessel. The most obvious indicator for 

whether path crosses the border is the local vessel response 𝐻𝜆𝑠 . 

What is more, all vessel paths are expected to be locally smooth, 

which can be enforced by limiting the direction change between 

two consecutive points in the path. For these reasons, the 

condition for keeping vessel path’s searching is when the 

following expression is fulfilled:  

 

            {|𝜐⃗𝑖
𝑇
𝜐⃗𝑖+1|  𝜃𝑝𝑎𝑡ℎ} ⋀ {𝐻𝜆𝑠 𝑎 > 0 𝑎 𝜖 𝛔𝑣⃗⃗𝐿}           (3) 

 

where 𝜐⃗𝑖  denote the corresponding direction from Hessian 

matrix for the point in path. The first term in Equation (3) 

enforces smoothness of path and the second term ensures the 

local curvature response. Based on analysis of vessel path, the 

threshold of smoothness constraint is empirically chosen as 

𝜃𝑝𝑎𝑡ℎ  cos (
𝜋

6
).  

 

3) Length correct: Practically, the vessel’s radius are 

usually changing along the vessel and especially in bifurcations. 

Hence, the length of vessel path could be longer in the center 

and decays toward the boundaries after path searching based on 

the direction  𝜐⃗1 . However, we can correct the length of these 

points by searching another ‘path’ along the radial direction  𝜐⃗2 

from border to center (see figure 3(b)). For the sake of simplicity, 

we use the same criterion present in (3) and add the radial length 

constraint as the follows: 

 

{|𝜐⃗𝑖
𝑇
𝜐⃗𝑖+1|  𝜃𝑝𝑎𝑡ℎ} ⋀ {𝐻𝜆𝑠 𝑎 > 0 𝑎 𝜖 𝛔𝑣⃗⃗𝐿} ⋀  {𝐿  2𝑠}    (4) 

The third term in (4) ensures the searching path cross through 
center point of the vessel. Then we selected the longest length in 
this path as the final length for the points that in the same cross-
section of the vessel. There are three examples presented in Fig.4, 
where the maximum length is set as100. 

 

C. Length-constrained vessel response 

We proposed the Length-constrained vessel enhancement as 
the follows: 

 

𝑅𝐿 𝑎  {

𝑚𝑎𝑥{𝐻𝜆𝑠 𝑎  𝑎𝜖 σ𝑣⃗⃗𝐿 𝑋 }      𝐿  𝐿𝑚𝑎𝑥               

𝐻𝜆𝑠 𝑎                                      𝐿𝑚𝑖𝑛  𝐿  𝐿𝑚𝑎𝑥

𝑚𝑖𝑛{𝐻𝜆𝑠 𝑎  𝑎𝜖 σ𝑣⃗⃗𝐿 𝑋 }       𝐿  𝐿𝑚𝑖𝑛               

       (5) 

 

where,  𝐿𝑚𝑎𝑥  is manually set constant means the certain 
minimum length for vessel and 𝐿𝑚𝑖𝑛   means the certain 
maximum length for non-vessel objects. The basic idea of  𝑅𝐿 𝑎  
is to choose the proper response for all the points in the same vessel 

path. Hence, it can enhance the response of points with longer 
path and suppress the response of points with shorter path at the 
same time. 

 

     

    

    

                   (a)                                               (b) 

Fig.4. Three examples of vessel path length map. (a) The origianl images; 
(b) The vessel length map of the input images. 
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Original                   OOF                Frangi’s vesselness            RORPO           Proposed method         Ground truth 

 

(a)                                (b)                               (c)                              (d)                               (e)                                (f) 

Fig.4. Five examples randomly chosen from the DRIVE dataset. They are enhanced with four different methods and segmented using global thresholds. (a) Input 
images; (b) The results of the OOF method; (c) The results of Frangi’s method; (d) The results of the RORPO; (e) The results of the proposed method; (f) The 
ground truth images. 

 

III. EXPERIMENTAL RESULTS 

 In order to assess the performance of the proposed length-
constrained vessel enhancement, the proposed method is 
compared with three other state-of-the-art methods, called 

Frangi’s vesselness [2], OOF (optimally oriented flux) [3] and 

RORPO (Ranking the Orientation Response of Path Operators) 
[4]. Frangi’s method and OOF are two classical methods that 
based on the local vessel information. RORPO is a recently 

proposed curvilinear filter that based on the non-local vessel 
information and achieves the promising results. 

We tested the four methods on forty retinal images in the 
DRIVE database [8]. We optimized each method’s parameters 
to achieve the results. For a better comparison and quantitative 
analysis, we took a segmentation with a global threshold value 
on all the enhancement results. We choose the best results 
among all the global thresholds as the final comparing results for 
each method. The manual segmentation masks in the dataset 
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were used as the ground truth. Besides, in order to reduce the 
influence of the border, we took an erosion operation on the 
border mask in the database with radius of 12 pixels. Finally, we 
used the mean square error (MSE) and Dice coefficient for 
quantitatively analysis.  

In MSE, the sum of square intensity differences of the 
corresponding pixels is divided by the size of the ground truth 
[9]. The smaller MSE represents the less difference between the 
ground truth and segmented results. Dice Coefficient is defined 
as: 

                   Dice  
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
                               (6) 

 

A bigger Dice value indicates a better segmentation of the vessel 
part. 

 The parameters of our methods in the experiments were: the 
scales related to Hessian matrix was set from 0.5 to 5 with   step 
length of 0.5, and the degree of amplification was set as 𝛾  3; 
the minimum vessel length is set as 𝐿𝑚𝑎𝑥  100; the maximum 
length of non-vessel objects is set as 𝐿𝑚𝑖𝑛  9; Other modalities 
or vessels most likely require different parameters. 

  Fig.4 shows five examples randomly chosen from the 
segmented results. We marked some parts of the vessel in the 
image to present the preservation of the vessel features. Some of 
the tiny and thin vessels are lost or discontinuous in the three 
other method, which may result from the ununiformed and low 
intensity distribution along these vessels. However, the 
proposed vessel path can still searched under this condition and 
obtained the accurate vessel length. Hence, these vessels can be 
better preserved in proposed method via length constraint with 
continuity. In addition, the proposed method could have better 
enhancement result in the junction region and clearer 
background compare to other methods. The better performance 
of the proposed method is due to the length constraint derived 
from the vessel path that can overcome the suppression in the 
bifurcations and reduce the noise in the background. From these 
examples, it shows that our method can achieve promising 
results.  

 Furthermore, the quantitative results presented in Fig.6, Fig. 
7 and Table I. As can be seen, the proposed method can reach 
the best performance in average mean square error (MSE) and 
Dice coefficient. In addition, the proposed method could 
achieve consistently outstanding vessel enhancement for all the 
evaluated images.  

 

TABLE I. MSE AND DICE VALUE FOR FOUR METHODS 

 

Methods OOF Frangi’s RORPO Proposed 

Average 

MSE % 

4.93 4.21 4.34 4.00 

Dice 

Coefficient 

0.692 0.717 0.705 0.738 

 

 
 

Fig.6. Mean square error of all images in datasets for four method is shown 
as box plots.  

 

 
 

Fig.7. Dice coefficient of all images in datasets for four method is shown  

as box plots.  

IV. CONCLUSION 

 In this paper, we propose a new approach for the vessel 
enhancement in 2D image, which integrates the non-local vessel 
path information to local vessel information. In order to obtain 
good enhancement visualization and preserve more features of 
vessel, we have proposed to make a transformation of the 
traditional curvature response and searching the vessel path. 

 The proposed method mainly consists of two steps: (1) 
getting the multiscale Hessian information from 2D vessel 
image and (2) calculating the vessel path’s length. Then the final 
vessel response is obtained from length-constrained curvature 
response. The preliminary experiment shows that the proposed 
method is promising and achieves the state-of-the-art 
enhancement results. The future work will focus on the 
extensive testing on other modalities or vessels. Furthermore, 
our ambition is in the extension of the proposed method for 3D 
images and vessel segmentation. 
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